10
folds and 1
repetitions.The performance is measured in three different ways.
algo | model | succ | par10 | mcp |
---|---|---|---|---|
baseline | vbs | 0.980 | 20785691.494 | 0.000 |
baseline | singleBest | 0.971 | 28978538.201 | 804200.419 |
baseline | singleBestByPar | 0.971 | 28978538.201 | 804200.419 |
baseline | singleBestBySuccesses | 0.971 | 28978538.201 | 804200.419 |
regr | lm | 0.971 | 28979653.709 | 804149.787 |
regr | rpart | 0.968 | 32027482.261 | 1179491.097 |
regr | randomForest | 0.976 | 24300402.389 | 369437.825 |
The following default feature steps were used for model building:
cheap_pattern, cheap_target, distance_pattern, distance_target, lad_features, code, AST
Number of presolved instances: 0
The cost for using the feature steps (adapted for presolving) is: 0
or on average: 0
The feature steps correspond to the following 35
/ 35
instance features:
cheap.pattern.time, cheap.pattern.vertices, cheap.pattern.edges, cheap.pattern.loops, cheap.pattern.meandeg,
cheap.pattern.maxdeg, cheap.pattern.degisfixed, cheap.pattern.density, cheap.target.time, cheap.target.vertices,
cheap.target.edges, cheap.target.loops, cheap.target.meandeg, cheap.target.maxdeg, cheap.target.degisfixed,
cheap.target.density, distance.pattern.time, distance.pattern.isconnected, distance.pattern.meandistance, distance.pattern.maxdistance,
distance.pattern.proportiondistancege2, distance.pattern.proportiondistancege3, distance.pattern.proportiondistancege4, distance.target.time, distance.target.isconnected,
distance.target.meandistance, distance.target.maxdistance, distance.target.proportiondistancege2, distance.target.proportiondistancege3, distance.target.proportiondistancege4,
lad.values.removed, lad.values.removed.percent, lad.values.removed.min, lad.values.removed.max, lad.time
The feature steps correspond to the following 75
/ 75
algorithm features:
Lines..Average., Lines..Total., Size..Average., Size..Total., Number.of.files,
Cyclomatic..Average., Cyclomatic..Total., Max.Indent..Average., Max.Indent..Total., nb_nodes,
nb_edges, degree_min, degree_max, degree_mean, degree_variance,
degree_entropy, transitivity, clustering_min, clustering_max, clustering_mean,
clustering_variance, path_min, paths_max, path_mean, path_variance,
path_entropy, Stmt, Type, Decl, Attribute,
Operator, Literal, edge_ss, edge_st, edge_sd,
edge_sa, edge_so, edge_sl, edge_ts, edge_tt,
edge_td, edge_ta, edge_to, edge_tl, edge_ds,
edge_dt, edge_dd, edge_da, edge_do, edge_dl,
edge_as, edge_at, edge_ad, edge_aa, edge_ao,
edge_al, edge_os, edge_ot, edge_od, edge_oa,
edge_oo, edge_ol, edge_ls, edge_lt, edge_ld,
edge_la, edge_lo, edge_ll, op_short, op_int,
op_long, op_long_long, op_float, op_double, op_bit
4
to 3
, resulting in a PAR10 score of 23567056.961
for the reduced model. Analogously, the model that was generated based on 5
of the originally 90
features resulted in a PAR10 score of 23441951.744
.
Below, you can find the list of the selected features and solvers:
Selected Features:
cheap.pattern.density, distance.pattern.proportiondistancege4, distance.target.meandistance, lad.time, Literal
Selected Solvers:
lad, supplementallad, glasgow2